WEBINAR

Microfluidic precision autostainer for fast multiplexed TSA-based immunofluorescence
Webinar agenda

Alexandre Kehren - Application Development Engineer

Microfluidic technology & LabSat® autostainer

Automated TSA-based multiplexing: tonsil optimization

Easy protocol transfer to a specific cancer type.
Case study: NSCLC
Chip with microfluidic channels network for reagents delivery.

Creates a closed chamber over the tissue sample.

Clamped against a standard slide.
Microfluidics for tissue analytics

Fast Fluidic Exchange Technology

PRESSURE CONTROLLED
The reagents are pushed into the microfluidic channels, filling the chamber almost instantaneously.

TEMPERATURE CONTROLLED
A heating element is present under the slide providing great control of temperature cycles during protocols.

CLOSED CHAMBER
A microfluidic chip is clamped against the slide creating a low-volume hermetic chamber.
Microfluidics for tissue analytics

Fast Fluidic Exchange Technology

- Fast staining time
- Uniform staining over the tissue
- Rapid and high-temperature epitope retrieval
- No reagent evaporation
- Tissue preservation
Technology: Publications

“Microfluidic processor allows rapid HER2 immunohistochemistry of breast carcinomas and significantly reduces ambiguous (2+) read-outs.”

“Continuous quantification of HER2 expression by microfluidic precision immunofluorescence estimates HER2 gene amplification in breast cancer”

D.G. Dupouy et al., Scientific Reports no. 6, pp. 20277, 2016

- MTP-score concordant with HER2 FISH
- 90% reduction of ambiguous HER2 cases with MTP
- MTP-based HER2 IF correlates with the HER2 gene copy number
Automated microfluidic stainer

- Buffers reservoirs
- Distribution System
- Waste
- Reagents reservoirs
- Slide
- Staining Chamber

LabSat® Research
Why multiplexing?

Personalized medicine: The number of biomarker tests increases as researchers seek clinically relevant markers to develop more precise diagnostic tests.

Spatial and morphological context: Need for simultaneous detection of multiple markers in their morphological context.

Immunophenotyping: There is an increasing trend to understand the complexity of the tumor microenvironment.
Tyramide Signal Amplification (TSA)

Working principle
TSA-based multiplexing on LabSat®

Use case: Opal® Kit

LabSat® Research + Opal® TSA Kit → Multiplexed IF
6 markers + DAPI

Lunaphore technologies
AKOYA BIOSCIENCES®
Opal® technology

Opal® 7-Color IHC Kit
7-colors TSA detection kit

- 6 TSA fluorophores of different wavelengths
 - Opal 520
 - Opal 540
 - Opal 570
 - Opal 620
 - Opal 650
 - Opal 690

- Counterstaining: DAPI

- Secondary: Mouse + Rabbit polymer HRP

- 6-plex / 7-colors assay
Objective

Develop an automatized full 6-plex with Opal® kit on LabSat®

- Heat-induced epitope retrieval (HIER)
- Protein blocking
- Primary antibody
- Enzyme-linked secondary antibody
- Tyramide signal amplification
- Antibodies strip-off
- Counterstaining

LabSat® Research

Repeat 6x

- Mounting
- Coverslipping
- Imaging

• Deparaffinization
• Rehydration
Automated TSA-based MUX optimization

4 axes of technology developments:

1. Single-plex staining
 - Single marker optimization
 - Repeatability study

2. Uniformity optimization
 - Uniformity assessment (performed with CD20 on tonsil tissue)
 - Repeatability study

3. Antibody elution
 - Antibody stripping efficiency for all markers
 - Assessment of elution impact on tissue morphology

4. Multiplexing
 - Combine all single-plex markers sequentially with elution steps in between
 - Perform full multiplex staining on LabSat®

Optimization tissue: **FFPE human Tonsil**

Selected markers and related colours (TSA):

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Fluorophore</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoxP3</td>
<td>Opal 570</td>
</tr>
<tr>
<td>PDL1</td>
<td>Opal 520</td>
</tr>
<tr>
<td>PD-1</td>
<td>Opal 690</td>
</tr>
<tr>
<td>CD68</td>
<td>Opal 620</td>
</tr>
<tr>
<td>CD8</td>
<td>Opal 540</td>
</tr>
<tr>
<td>PanCK</td>
<td>Opal 650</td>
</tr>
<tr>
<td>Counterstain</td>
<td>DAPI</td>
</tr>
</tbody>
</table>
Single-plex optimization
Single-plex optimization

LabSat® protocol optimization: staining
Each step is optimized to reduce execution while ensuring staining quality

- Antigen retrieval
 Temperature and pressure settings
- Reagents incubation
 Temperature, duration, and flow optimization
- Primary antibody and substrate
 Titration of antibodies and Opal® reagents

Image acquisition and quantification with Mantra™ platform
- InForm™ software used for image analysis
Image analysis

Spectral unmixing:
Process of decomposing the spectral signature of a mixed signal into a set of constituents with their corresponding weight

- In every cell, signal intensity is calculated for each constituent
- Intensity is normalized by exposure
Single-plex optimization: results

For each marker (single-plex), a bright, specific signal is obtained, with high signal-to-background ratio.

Tissue stained: tonsil (FFPE)

<table>
<thead>
<tr>
<th></th>
<th>FOXP3</th>
<th>PD-L1</th>
<th>PD-1</th>
<th>CD68</th>
<th>CD8</th>
<th>CK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean NI**</td>
<td>7.1</td>
<td>3.7</td>
<td>7.5</td>
<td>8.5</td>
<td>6.2</td>
<td>12.3</td>
</tr>
</tbody>
</table>

* Software-reconstructed brightfield view (Pathology view, InForm™, AKOYA)
** Mean Normalized Intensity computed with InForm™ on 3 ROI per slide
Single-plex optimization: results

Protocol variability assessment on 9 slides, tonsil tissue (FFPE)

The single-plex reproducibility study showed less than 15% of signal variability, underlining the effective automation of protocols of the system.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Slide 1</th>
<th>Slide 2</th>
<th>Slide 3</th>
<th>Slide 4</th>
<th>Slide 5</th>
<th>Slide 6</th>
<th>Slide 7</th>
<th>Slide 8</th>
<th>Slide 9</th>
<th>CV*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.5%</td>
</tr>
<tr>
<td>PDL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td>PD1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.9%</td>
</tr>
<tr>
<td>CD68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8%</td>
</tr>
<tr>
<td>CD8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7%</td>
</tr>
<tr>
<td>CK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7%</td>
</tr>
</tbody>
</table>

*Coefficient of variation of signal among the 9 stained slides, based on InForm® or Fiji (for CD68) analysis.
Uniformity
Uniformity optimization

Signal gradient issues with standard incubation

Solution: Dynamic incubation with "oscillating flow"

Dynamic incubation reduces signal gradient
Uniformity: Results

Static incubation vs. Dynamic incubation

Standard incubation

![Image of standard incubation](image)

<table>
<thead>
<tr>
<th>ROI</th>
<th>Signal quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Signal drop over 1cm: 30%

Dynamic incubation

![Image of dynamic incubation](image)

<table>
<thead>
<tr>
<th>ROI</th>
<th>Signal quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Signal drop over 1cm: 6%

Intensity normalized by exposure time, averaged on 20 brightest cells per ROI
Antibody elution
Elution optimization

Elution step
Removal of the primary-secondary antibodies complexes on the tissue after each marker detection

Assessment method
Compare signal on reference slide and eluted slide

Reference slide
- Antigen retrieval
- AbI
- AbII
- TSA

Eluted slide
- Antigen retrieval
- AbI
- AbII
- Elution (heating)
- Elution (heating)
- TSA

Imaging + Quantification

Elution efficiency
\[E_{elution} = \frac{\text{Signal}_{Ref} - \text{Signal}_{Elu}}{\text{Signal}_{Ref}} \times 100 \]
Elution study: Antibody strip-off efficiency

The elution method in LabSat® consists of a heating cycle after each marker detection.

<table>
<thead>
<tr>
<th></th>
<th>FOXP3</th>
<th>PD-L1</th>
<th>PD-1</th>
<th>CD68</th>
<th>CD8</th>
<th>CK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference slide</td>
<td></td>
</tr>
<tr>
<td>Eluted slide</td>
<td></td>
</tr>
<tr>
<td>Elution efficiency</td>
<td>100%</td>
<td>100%</td>
<td>99%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

The elution efficiency was over 99% for all 6 markers of the panel.

The method used with LabSat® shows efficient strip-off.
Elution study

Impact on morphology
The impact of repeated heating cycles was assessed for 3 markers.

Following 5 elution cycles on LabSat®, the results show no apparent degradation of the tissue morphology, including nuclear morphology, and epitope detection.

<table>
<thead>
<tr>
<th></th>
<th>1 AR</th>
<th>2 AR</th>
<th>3 AR</th>
<th>4 AR</th>
<th>5 AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI</td>
<td>2,1</td>
<td>2,6</td>
<td>2,9</td>
<td>3,6</td>
<td>3,8</td>
</tr>
<tr>
<td>CD8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI</td>
<td>6,5</td>
<td>9,1</td>
<td>9,4</td>
<td>9,2</td>
<td>9,0</td>
</tr>
<tr>
<td>PD-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI</td>
<td>7,1</td>
<td>6,8</td>
<td>7,5</td>
<td>7,1</td>
<td>6,4</td>
</tr>
</tbody>
</table>
6-plex workflow

- **Tissue deparaffinization**
- **Reagents / buffers loading on device**

Antigen retrieval
- Blocks
- AbI
- AbII - HRP

Amplification (TSA)

Elution

Intra-slide procedure: 2 min

Slide stays in the machine

Reagent swap

- **Antigen retrieval**
- Blocks
- AbII - HRP

- **Amplification (TSA)**

- **Elution**

Slide stays in the machine

Mounting & coverslipping

Microscopy

+ **DAPI**
Multiplexing: results

Semi automated 6-plex with LabSat® and Opal®

4h12m

FFPE tonsil, 6-plex + DAPI staining in 4h12 with LabSat® and Opal® kit

- FoxP3
- PD-L1
- PD-1
- CD68
- CD8
- CK
- DAPI
Multiplexing: results

- High signal-to-background ratio for each marker
- Signal uniformity (no gradient) across tissue section
- Efficient antibody elution: over 99% for all 6 markers
- Tissue morphology and epitopes are highly preserved
- Reproducible results with high degree of consistency
Protocol transfer
Protocol transfer method

Is this tonsil-optimized protocol applicable to my cancer tissue samples?

Transfer strategy:
- Apply tonsil-optimized protocol
- Evaluate performance and define which markers need re-optimization
- Modify protocol parameters to reach desired performance

Case study: Non small-cell lung carcinoma (NSCLC) whole-tumor and TMA sections

Objective: Reach acceptable performance on NSCLC in a minimum number of optimization steps
Protocol parameters

LabSat® offers flexibility for optimization:

• Modify antigen retrieval temperature
• Modify incubation times
• Additional steps (blocking, etc.)
• Reagents titrations
Direct application of the protocol on NSCLC showed lower intensity levels than expected for all markers compared to tonsil. **Re-optimization needed.**
6-plex TSA transfer to NSCLC whole-tumor

Protocol adjustments:
- Antigen retrieval temperature increase
- Opal 540 (CD8) concentration increase

<table>
<thead>
<tr>
<th></th>
<th>PD-L1</th>
<th>CD8</th>
<th>FoxP3</th>
<th>CD68</th>
<th>CK</th>
<th>PD-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine IHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Tonsil-optimized" protocol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted for NSCLC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion:
Optimized TSA-based 6-plex protocol resulted in appropriate detection of all markers on NSCLC
Transfer the optimized 6-plex for NSCLC from FFPE whole-tumor to TMA.

Conclusion:
Optimized TSA 6-plex protocol showed appropriate detection of all markers on a NSCLC TMA comparably to standard IHC.
6-plex TSA transfer to NSCLC TMA

Transfer the optimized 6-plex for NSCLC from FFPE whole-tumor to TMA.

Conclusion:
Various patterns of expression can be detected comparably to standard IHC

6-plex: 4h12m
Conclusions

Optimized Opal® panel on Labsat®
- Full 6-plex / 7-color assay on tonsil tissue in 4h12min
- Quality results (signal, uniformity, strip-off, morphology)

Protocol transfer to a different tissue type
- 6-plex / 7-color assay transferred to lung (same duration: 4h12min)
- Easy protocol adaptation (2-steps transfer)
Thank you for joining us.

Please send your questions to: communications@lunaphore.com